Semi-Supervised Clustering for Architectural Modularisation
نویسندگان
چکیده
Modular construction allows for a faster, safer, better controlled, and more productive process, yielding quality results with low risk controlled costs. However, despite the potential advantages of this methodology, its adoption has remained slow due to reasonably high degree standardisation repetition that projects require, inexorably clashing unique building designs created meet clients’ needs. The present article proposes performing modularisation process after design is complete, reaping most benefits modular while preserving vision building. This objective achieved by implementing semi-supervised methodology reliant on clustering individual rooms subsequent user validation obtained clusters identify base modules representative each cluster. proposed applied in case study an existing apartment complex, which was previously performed manually—thus serving as baseline. acquired display 99.6% reduction process’ duration, maintaining 96.4% Normalised Mutual Information Score 93.3% Adjusted Score, justifying continuous development assessment future works.
منابع مشابه
Semi supervised clustering for Text Clustering
ABSTRACT: Based on clustering algorithm Affinity Propagation (AP) I present this paper a semisupervised text clustering algorithm, called Seeds Affinity Propagation (SAP). There are two main contributions in my approach: 1) a similarity metric that captures the structural information of texts, and 2) seed construction method to improve the semisupervised clustering process. To study the perform...
متن کاملSemi-supervised Clustering
Clustering is an unsupervised learning problem whose objective is to find a partition of the given data. However, a major challenge in clustering is to define an appropriate objective function in order to to find an optimal partition that is useful to the user. To facilitate data clustering, it has been suggested that the user provide some supplementary information about the data (eg. pairwise ...
متن کاملSemi-Supervised Projected Clustering
Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A number of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets such as gene expression profiles. In this paper we...
متن کاملSemi-supervised clustering methods
Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, informat...
متن کاملSemi-supervised Variable Weighting for Clustering
Semi-supervised learning, which uses a small amount of labeled data in conjunction with a large amount of unlabeled data for training, has recently attracted huge research attention due to the considerable improvement in learning accuracy. In this work, we focus on semisupervised variable weighting for clustering, which is a critical step in clustering as it is known that interesting clustering...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Buildings
سال: 2022
ISSN: ['2075-5309']
DOI: https://doi.org/10.3390/buildings12030303